FACTORISING A THIRD DEGREE POLYNOMIAL

Example: $x^{3}-6 x^{2}+11 x-6$
Step 1: Use your calculator to find the first factor

- Mode Setup 3: Table
- Enter Equation
- Start -5 End +5 Steps $1 \square$
- Look At Your y - Value $f(x)$, If It Is 0 , Then Your $x-$ Value Is A Factor
$\therefore \therefore x-1$ is a factor of the above expression
$(x-1)($
- First arrow x times what number will give you the first term $x \times x^{2}=x^{3}$
- Second arrow -1 x ___ $=-6 \therefore-1 \mathrm{x}+6=-6$
$(x-\underbrace{1)\left(x^{2}\right.} \quad-6)$
$-1 \times x^{2}=-x^{2}$
We want $-6 x^{2} \rightarrow-x^{2}-5 x^{2}=-6 x^{2}$
$(x-1)\left(x^{2}-5 x^{2}-6\right)$
$(x-1)(x-2)(x-3)=0$
$(x-1)=0 \quad x=1$
$(x-2)=0 \quad x=2$
$(x-3)=0 \quad x=3$

Average Gradient

First Principles
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
let $\mathrm{h}=0$

Between 2 points
$f(x)=1^{\text {st }} x$ value substituted into equation
$f(x+h)=2^{\text {nd }} x$ value substituted into equation
$h=x_{2}-x_{1}$
Use the average gradient formula

Limits

- Factorize first and simplify where possible.
- Substitute value into the term after it has been factorized

Differentiation

$$
\begin{gathered}
\text { If } y=x^{n} \text { then } \frac{d y}{d x}=n x^{n-1} \\
\text { If } f(x)=k \text { then } f^{\prime}(x)=0 \rightarrow k \text { being a constant }
\end{gathered}
$$

Use rules
$y \rightarrow d y$
$d x$
$f(x) \rightarrow f^{\prime}(x)$
$D x \rightarrow=$

Tangents

- A tangent is a straight line
- To find m (gradient) you need to find $f^{\prime}(x)$
- If you are only given the x-coordinate, subs into original equation(curve) to find y-coordinate
- Use the equation: $\quad y-y 1=m(x-x 1)$

Rate of change

Velocity = ds where s is distance dt where t is time

- Initial velocity is where $t=0$
- Maximum height is where the derivative $d^{\prime}(t)=0$

Max/Min

> Perimeter $=2(l+b)$
> $\mathrm{SA}=2(l b+l h+b h)$
> $\mathrm{V}=I \times b \times h$

$$
\begin{aligned}
& \mathrm{SA}=2 \pi r \mathrm{r}+2 \pi \mathrm{r}^{2} \\
& \mathrm{~V}=\pi \mathrm{r}^{2} \mathrm{~h}
\end{aligned}
$$

For Maximum Area or
Volume: Let $f^{\prime}(x)=0$

Graphs

General Equation $\rightarrow y=a x^{3}+b x^{2}+c x+d$

Steps to sketching a Calculus Graph

1) Shape: $a>0$
 $a<0$

2) Turning Point: Let $f^{\prime}(x)=0$

Find the y - intercepts by substituting the x

- intercepts into the original equation

3) x - intercept: let $y=0$

- Factorize using factor theorem
- Solve for x

4) y-intercept: let $x=0$
5) Point of inflection: let $f^{\prime \prime}(x)=0$

Finding the equation of a Calculus Graph

Given: Three x -intercepts and one other point.
Use: $y=a\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)$

To take note whether your a value is positive or negative

Given: The coordinates of a stationery point (TP) and one other point

Use

- The derivative of the given equation and substitute the x value into the derivative and make it equal to 0 .
- Use one other co-ordinate to find any other unknown values.

